
CLIENT

vtkObject

DATA SERVER
consisting of MPI job of processes

running on different machines

vtkObject
vtkObject

Proxy vtkObject

Proxy

vtkObject

Property Method()

STANDALONE CLIENT

RENDER SERVER
a separate MPI job

vtkObjectvtkObject

A vtkProcessModule enum determines where the object
controlled by the proxy lives. The default is on the data server,
but it can be on every process or on particular ones.

ParaView uses Proxies to control vtkObjects.
A Proxy's Properties control individual Methods on the Object.

The proxies give configuration independence to the application
code. The same call to control a proxy works whether the
Object lives inside the same process or on remote and possibly
parallel processes, or both.

Proxy

SubProxy

SubProxy

SubProxy

vtkObject

vtkObject

vtkObject

Proxy C++ class inheritance

Proxies at implemented in C++ classes
(specifically vtkSMProxy). Many subclasses
exist to refine behavior.

Proxy configuration inheritance

Proxies are configured from the contents of
XML files (Servers/ServerManager/
rendering.xml).

The proxy name from the XML defines the
specific C++ vtkSMProxy subclass that is
instantiated when a given proxy is asked for.

The XML configurations have an inheritance
relationship that is independent of the C++
class inheritance.

Configurations also can define containment
relationships (SubProxies).

vtkObject C++ inheritance

The objects that proxies control also have
C++ inheritence.

SubProxies

Proxies can contain SubProxies. The parent
Proxy can share properties with its
Subproxies, and thus one Proxy can control
many vtkObjects.

Run time configuration

The C++ and XML configuration determine
what overall static structure of a proxy is, but
the proxy has to be finalized at run time.
Here, internal pipelines are constructed by
calling mainly
vtkSMProxy::BeginCreateVTKObjects
and then
vtkSMProxy::CreatePipeline()

SourceProxy

SourceProxy

SourceProxy

vtkAlgorithm
ie. Reader

vtkAlgorithm
ex. Filter

vtkAlgorithm
ex. Filter

SMOutputPort

SMOutputPort

vtkDataObject

vtkDataObject

SMOutputPort vtkDataObject

ParaView sets up data processing pipeline by
instantiating SourceProxies. vtkSMSourceProxies are
vtkSMProxies that are specialized to control
vtkAlgorithms.

Connections between SourceProxies are managed
with SMOutputPort proxies. These correlate to
vtkAlgorithm::OutputPorts, each of which produces
vtkDataObjects.

The SourceProxy pipeline graph mirrors the Algorithm
pipeline graph, but it is not 1:1 because Proxies (via
SubProxies) can control more than one Algorithm.
This happens for example in a Clip filter which
controls the a widget and the filter that clips onto the
widget.

SourceProxy

SourceProxy

SMOutputPort

SMOutputPort

Representation

Representation

View

Representations manage formating and delivery of
data from the producing algorithm to the consuming
rendering engine (ex, surface extract, mapper, actor
etc). The algorithm and engine may live on different
machines.

Views control windows (ex,
renderer, renderwindow,
camera)

Every vtkDataObject produced along the pipeline
can be displayed simultaneously. ParaView
manages the rendering pipelines with
Representations within Views. Both Views and
Representations are Proxies.

Auxiliary
Representation

Representations often have sub representations,
these can be swapped in and out (surface mode
verse wireframe mode), or any number of them can
be enabled simultaneously (surface mode and
selection labelling.)

SourceProxy

SMOutputPort

SourceProxy

SourceProxy

SourceProxy

SMOutputPort

SMOutputPort

SMOutputPort

Representation

Representation

View 1

View 2

Representation

Representation

Representation

Representation

Every output along pipeline may be
displayed simultaneously in many different views.

Exact representation chosen depends on data type and view type.
Ex, Spreadsheet view doesn't have mappers and actors in the representation,
nor cameras and lights in the View.

Geometry Representation

Surface Representation

Outline Representation

similar to above but no LOD

CubeAxis Representation

similar to above

Data Label Representation

feeds into 2D Renderer

GeometryFilter

Strategy
Actor

LOD
Mapper

Mapper

 LOD Actor

RenderView

3D
Renderer

Render
Window

SourceProxy

VTK Data

2D
Renderer

etc

Representations have internal Strategy proxies. Strategies give the display
pipeline configuration independence. The Strategy chosen depends on data
type and configuration.

Simple Strategy

Mapper

Geometry

LOD Mapper

QuadricClustering

Update Supressor

LOD Update
Supressor

The LOD pipeline in a strategy is active during
camera motion. It does geometric downsampling
to help maintain interactivity with large data. When
the mouse button releases, the full-res subpipeline
activates instead.

Simple Strategy is instantiated
for 3D rendering in builtin

(serial) configuration.

Simple Parallel Strategy

Mapper

Geometry

LOD Mapper

Quadric
Clustering

Update
Supressor

MPI Move
Data

Post
Collect
Update

Supressor

Post
Distributor

Update
Supressor

LOD
Update

Supressor

LOD
MPI Move

Data

LOD
Post

Collect
Update

Supressor

LOD
Post

Distributor
Update

Supressor

Parallel Strategies are more complex.
They have UpdateSupressors, which give the client
application a way to tell the remote pipelines to update.
They are named suppressors because they prevent the
pipeline from running off the upstream end on the client
(and renderserver) for which the US will have no input.
Parallel Strategies also have MPIMoveData filters which
send data forward across processes.
On Rendering servers only, distributors exist to swap data
chunks between server nodes to enforce back to front
ordering for volume rendering.

Distributor

Distributor

Render Window

Composite

Render Window

Composite

Render Window

Renderer

Render WindowSimple Parallel Strategy

On Server
Geometry

Simple Parallel Strategy

On Server
Geometry

Simple Parallel Strategy

On Server
Geometry

Update
Supres

sor

MPI
Move
Data

Post
Collect

US

Post
Distrib
utor
US

Simple Parallel Strategy

On Client

MapperUpdate
Supres

sor

MPI
Move
Data

Post
Collect

US

Post
Distrib
utor
US

Distrib
utor

Renderer

Mapper

Composite

Deliver

NOTE: LOD pipelines
ommited from diagram

for clarity

Depending on settings and data size,
rendering may happen on the server or on
the client (or in tiled display, both).

ParallelRenderManager objects are attached
to the RenderWindows and synchronize
window, mouse, and render event calls on all
of them.

Two ParallelRenderManagers are involved for
ParaView, the first does depth compositing on
the server, the second delivers the final result
to the client.

SERVER
Process 1 Process 2 Process 3

CLIENT

Process 0

RenderWindow

3D Renderer
"Data"

2D Renderer
"Annotation"

RenderWindow

3D Renderer
"Data"

2D Renderer
"Annotation"

RenderWindow

3D Renderer
"Data"

2D Renderer
"Annotation"

RenderWindow

3D Renderer
"Data"

2D Renderer
"Annotation"

Composite Render
Manager

binary swap after
RW::Render()

Composite Render
Manager

binary swap after
RW::Render()

Composite Render
Manager

binary swap after
RW::Render()

Composite Render
Manager

binary swap after
RW::Render()

RenderWindow

3D Renderer
"Data"

2D Renderer
"Annotation"

Client Server Deliver
Render Manager

After CRP::Composite()

Client Server Deliver
Render Manager

After 3D Renderer
Render()

Simple Parallel Strategy

On DataServer
Geometry

Simple Parallel Strategy

On RenderServer
Simple Parallel Strategy

On RenderServer

Simple Parallel Strategy

On DataServer
Geometry

Simple Parallel Strategy

On DataServer
Geometry

Simple Parallel Strategy

On DataServer
Geometry

Update
Supressor

MPI Move
Data

Post
Collect
Update

Supressor

Post
Distributor

Update
Supressor

Simple Parallel Strategy

On RenderServer

Update
Supressor

MPI Move
Data

Post
Collect
Update

Supressor

Post
Distributor

Update
Supressor

Distributor

Simple Parallel Strategy

On Client

Update
Supressor

MPI Move
Data

Post
Collect
Update

Supressor

Post
Distributor

Update
Supressor

Render Window

Composite

Render Window

Composite

Render Window

Renderer

Render Window

Mapper

Renderer

Mapper

Composite

Deliver

NOTE: LOD pipelines
ommited from diagram

for clarity

DataServer/RenderServer

mode inserts another

between the data

producer and the client.

	Canvas 11
	Canvas 15
	Canvas 12
	Canvas 13
	Canvas 14
	Canvas 2
	Canvas 3
	Canvas 4
	Canvas 5
	Canvas 6
	Canvas 7

